Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 46

Answer

$$2\cos \sqrt x + 2\sqrt x \sin \sqrt x + C$$

Work Step by Step

$$\eqalign{ & \int {\cos \sqrt x } dx \cr & {\text{Make an appropiate }}u{\text{ - substitution }} \cr & u = \sqrt x ,\,\,\,\,\,\,\,du = \frac{1}{{2\sqrt x }}dx,\,\,\,\,\,\,dx = 2\sqrt x du,\,\,\,\,\,\,dx = 2udu\,\,\, \cr & {\text{write in terms of }}u \cr & \int {\cos \sqrt x } dx = \int {\cos u} \left( {2udu} \right) \cr & = 2\int {u\cos u} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 45}} \cr & \left( {45} \right):\,\,\,\,\,\,\int {u\cos udu = } \cos u + u\sin u + C \cr & 2\int {u\cos u} du = 2\cos u + 2u\sin u + C \cr & {\text{write in terms of }}x{\text{; replace }}\sqrt x {\text{ for }}u \cr & = 2\cos \sqrt x + 2\sqrt x \sin \sqrt x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.