Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 10

Answer

$$\frac{1}{6}\ln \left| {\frac{{x - 3}}{{x + 3}}} \right| + C\,$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2} - 9}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{1}{{{x^2} - 9}}} dx = \int {\frac{1}{{{x^2} - {3^2}}}} dx \cr & {\text{The integrand has a expression in the form }}{u^2} - {a^2}{\text{}}{\text{}} \cr & {\text{Use formula 70}} \cr & \left( {70} \right):\,\,\,\,\int {\frac{{du}}{{{u^2} - {a^2}}}} = \frac{1}{{2a}}\ln \left| {\frac{{u - a}}{{u + a}}} \right| + C\,\,\, \cr & {\text{let }}u = x,\,\,\,a = 3 \cr & \int {\frac{1}{{{x^2} - {3^2}}}} dx = \frac{1}{{2\left( 3 \right)}}\ln \left| {\frac{{x - 3}}{{x + 3}}} \right| + C\,\,\, \cr & {\text{simplifying}} \cr & \int {\frac{1}{{{x^2} - 9}}} dx = \frac{1}{6}\ln \left| {\frac{{x - 3}}{{x + 3}}} \right| + C\, \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.