Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 21

Answer

$$\frac{{{x^4}}}{{16}}\left( {4\ln x - 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{x^3}\ln x} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{The integrand has a power of }}u{\text{ multiplying basic functions}} \cr & {\text{Use formula 50}} \cr & \left( {50} \right):\,\,\,\,\,\int {{u^n}} \ln udu = \frac{{{u^{n + 1}}}}{{{{\left( {n + 1} \right)}^2}}}\left[ {\left( {n + 1} \right)\ln u - 1} \right] + C \cr & \int {{x^3}\ln x} dx \to \,\,\,\,\,u = x,\,\,\,n = 3 \cr & {\text{By formula 50}} \cr & \int {{x^3}\ln x} dx = \frac{{{x^{3 + 1}}}}{{{{\left( {3 + 1} \right)}^2}}}\left[ {\left( {3 + 1} \right)\ln x - 1} \right] + C \cr & {\text{simplifying}} \cr & \int {{x^3}\ln x} dx = \frac{{{x^4}}}{{{{\left( 4 \right)}^2}}}\left( {4\ln x - 1} \right) + C \cr & \int {{x^3}\ln x} dx = \frac{{{x^4}}}{{16}}\left( {4\ln x - 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.