Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 4

Answer

$$ - \frac{1}{x} - 5\ln \left| {\frac{{1 - 5x}}{x}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2}\left( {1 - 5x} \right)}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & = \int {\frac{1}{{{x^2}\left( {1 + \left( { - 5} \right)x} \right)}}} dx \cr & {\text{The integrand has a expression in the form }}a + bu{} \cr & {\text{Use formula 66}} \cr & \left( {66} \right):\,\,\,\,\,\int {\frac{{du}}{{{u^2}\left( {a + bu} \right)}}} = - \frac{1}{{au}} + \frac{b}{{{a^2}}}\ln \left| {\frac{{a + bu}}{u}} \right| + C \cr & {\text{let }}u = x,\,\,\,a = 1{\text{ and }}b = - 5 \cr & \int {\frac{1}{{{x^2}\left( {1 + \left( { - 5} \right)x} \right)}}} dx = - \frac{1}{{\left( 1 \right)x}} + \frac{{ - 5}}{{{{\left( 1 \right)}^2}}}\ln \left| {\frac{{1 + \left( { - 5} \right)x}}{x}} \right| + C \cr & {\text{simplifying}} \cr & \int {\frac{1}{{{x^2}\left( {1 - 5x} \right)}}} dx = - \frac{1}{x} - 5\ln \left| {\frac{{1 - 5x}}{x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.