Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 14

Answer

$$\frac{{\sqrt {{x^2} - 2} }}{{2x}} + C\,\,\,\,\,\,$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2}\sqrt {{x^2} - 2} }}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{1}{{{x^2}\sqrt {{x^2} - 2} }}} dx = \int {\frac{1}{{{x^2}\sqrt {{x^2} - {{\left( {\sqrt 2 } \right)}^2}} }}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {{u^2} - {a^2}} {} \cr & {\text{Use formula 90}} \cr & \left( {90} \right):\,\,\,\,\int {\frac{{{u^2}}}{{\sqrt {{u^2} \pm {a^2}} }}du} = \mp \frac{{\sqrt {{u^2} + {a^2}} }}{{{a^2}u}} + C\,\,\, \cr & {\text{let }}u = x,\,\,\,a = \sqrt 2 \cr & \int {\frac{1}{{{x^2}\sqrt {{x^2} - {{\left( {\sqrt 2 } \right)}^2}} }}} dx = \frac{{\sqrt {{x^2} - {{\left( {\sqrt 2 } \right)}^2}} }}{{{{\left( {\sqrt 2 } \right)}^2}x}} + C\,\,\,\,\,\, \cr & {\text{simplifying}} \cr & \int {\frac{1}{{{x^2}\sqrt {{x^2} - 2} }}} dx = \frac{{\sqrt {{x^2} - 2} }}{{2x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.