Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 49

Answer

$$\frac{1}{8}\ln \left| {\frac{{x - 1}}{{x + 7}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2} + 6x - 7}}} dx \cr & {\text{completing the square for the denominator}} \cr & {x^2} + 6x + {\left( {\frac{6}{2}} \right)^2} - {\left( {\frac{6}{2}} \right)^2} - 7 \cr & \left( {{x^2} + 6x + 9} \right) - 9 - 7 \cr & {\left( {x + 3} \right)^2} - 16 \cr & \cr & \int {\frac{1}{{{x^2} + 6x - 7}}} dx = \int {\frac{1}{{{{\left( {x + 3} \right)}^2} - 16}}} dx \cr & {\text{make }}u = x + 3,\,\,\,\,{\text{then}}\,\,\,\,\,\,du = dx \cr & \int {\frac{1}{{{{\left( {x + 3} \right)}^2} - 16}}} dx = \int {\frac{1}{{{u^2} - 16}}} du \cr & \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 70}} \cr & \left( {70} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{u^2} - {a^2}}}} = \frac{1}{{2a}}\ln \left| {\frac{{u - a}}{{u + a}}} \right| + C \cr & \int {\frac{1}{{{u^2} - 16}}} du = \frac{1}{{2\left( 4 \right)}}\ln \left| {\frac{{u - 4}}{{u + 4}}} \right| + C \cr & \cr & {\text{write in terms of }}x{\text{; replace }}x + 3 {\text{ for }}u \cr & = \frac{1}{8}\ln \left| {\frac{{x + 3 - 4}}{{x + 3 + 4}}} \right| + C \cr & = \frac{1}{8}\ln \left| {\frac{{x - 1}}{{x + 7}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.