Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 50

Answer

$$\frac{{x + 1}}{2}\sqrt {3 - 2x - {x^2}} + \frac{4}{2}{\sin ^{ - 1}}\left( {\frac{{x + 1}}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\sqrt {3 - 2x - {x^2}} } dx \cr & {\text{completing the square for the radicand}} \cr & = - \left( {{x^2} + 2x - 3} \right) \cr & = - \left( {{x^2} + 2x - 3 + 1 - 1} \right) \cr & = - \left[ {{{\left( {x + 1} \right)}^2} - 4} \right] \cr & = 4 - {\left( {x + 1} \right)^2} \cr & \cr & \int {\sqrt {3 - 2x - {x^2}} } dx = \int {\sqrt {4 - {{\left( {x + 1} \right)}^2}} } dx \cr & {\text{make }}u = x + 1,\,\,\,\,{\text{then}}\,\,\,\,\,\,du = dx \cr & \int {\sqrt {4 - {{\left( {x + 1} \right)}^2}} } dx = \int {\sqrt {4 - {u^2}} } du \cr & \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 74}} \cr & \left( {74} \right):\,\,\,\,\,\,\int {\sqrt {{a^2} - {u^2}} } du = \frac{u}{2}\sqrt {{a^2} - {u^2}} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\frac{u}{a} + C \cr & \int {\sqrt {4 - {u^2}} } du = \frac{u}{2}\sqrt {4 - {u^2}} + \frac{4}{2}{\sin ^{ - 1}}\frac{u}{2} + C \cr & \cr & {\text{write in terms of }}x{\text{; replace }}x + 1 {\text{ for }}u \cr & = \frac{{x + 1}}{2}\sqrt {4 - {{\left( {x + 1} \right)}^2}} + \frac{4}{2}{\sin ^{ - 1}}\left( {\frac{{x + 1}}{2}} \right) + C \cr & = \frac{{x + 1}}{2}\sqrt {3 - 2x - {x^2}} + \frac{4}{2}{\sin ^{ - 1}}\left( {\frac{{x + 1}}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.