Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 39

Answer

$$\frac{1}{{16}}\ln \left| {\frac{{4{x^2} - 1}}{{4{x^2} + 1}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{16{x^4} - 1}}dx} \cr & {\text{write the integrand as}} \cr & = \int {\frac{x}{{{{\left( {4{x^2}} \right)}^2} - 1}}dx} \cr & {\text{Make an appropiate }}u{\text{ - substitution }} \cr & u = 4{x^2},\,\,\,\,\,\,\,du = 8xdx,\,\,\,\,\,\,dx = \frac{{du}}{{8x}} \cr & {\text{write in terms of }}u \cr & \int {\frac{x}{{{{\left( {4{x^2}} \right)}^2} - 1}}dx} = \int {\frac{x}{{{u^2} - 1}}\left( {\frac{{du}}{{8x}}} \right)} \cr & = \frac{1}{8}\int {\frac{1}{{{u^2} - 1}}du} \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 70}} \cr & \left( {70} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{u^2} - {a^2}}} = \frac{1}{{2a}}\ln \left| {\frac{{u - a}}{{u + a}}} \right| + C} \cr & {\text{take }}a = 1,\,\, \cr & \frac{1}{8}\int {\frac{1}{{{u^2} - 1}}du} = \frac{1}{{16\left( 1 \right)}}\ln \left| {\frac{{u - 1}}{{u + 1}}} \right| + C \cr & {\text{simplifying}} \cr & = \frac{1}{{16}}\ln \left| {\frac{{u - 1}}{{u + 1}}} \right| + C \cr & {\text{write in terms of }}x{\text{; replace }}4{x^2}{\text{ for }}u \cr & = \frac{1}{{16}}\ln \left| {\frac{{4{x^2} - 1}}{{4{x^2} + 1}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.