Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 27

Answer

$$\frac{1}{3}{\tan ^{ - 1}}\frac{{3\sqrt x }}{2} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt x \left( {9x + 4} \right)}}dx} ,\,\,\,\,u = 3\sqrt x \cr & = \int {\frac{1}{{\sqrt x \left( {{{\left( {3\sqrt x } \right)}^2} + 4} \right)}}dx} \cr & {\text{Using the given substitution}} \cr & u = 3\sqrt x ,\,\,\,\,\,\,\,du = \frac{3}{{2\sqrt x }}dx,\,\,\,\,\,\,dx = \frac{{2\sqrt x }}{3}du \cr & {\text{write in terms of }}u \cr & \int {\frac{1}{{\sqrt x \left( {{{\left( {3\sqrt x } \right)}^2} + 4} \right)}}dx} = \int {\frac{1}{{\sqrt x \left( {{u^2} + 4} \right)}}\left( {\frac{{2\sqrt x }}{3}du} \right)} \cr & = \int {\frac{1}{{\left( {{u^2} + 4} \right)}}\left( {\frac{2}{3}du} \right)} \cr & = \frac{2}{3}\int {\frac{1}{{{u^2} + 4}}du} \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 68}} \cr & \left( {68} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\frac{u}{a} + C} \cr & {\text{take }}a = 2 \cr & \frac{2}{3}\int {\frac{1}{{{u^2} + 4}}du} = \frac{2}{{3\left( 2 \right)}}{\tan ^{ - 1}}\frac{u}{2} + C \cr & {\text{simplifying}} \cr & \frac{2}{3}\int {\frac{1}{{{u^2} + 4}}du} = \frac{1}{3}{\tan ^{ - 1}}\frac{u}{2} + C \cr & {\text{write in terms of }}x{\text{ replace }}\cos 2x{\text{ for }}u \cr & = \frac{1}{3}{\tan ^{ - 1}}\frac{{3\sqrt x }}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.