Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 32

Answer

$$ - \frac{{\sqrt {3 - 4{x^2}} }}{{3x}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2}\sqrt {3 - 4{x^2}} }}} dx,\,\,\,\,u = 2x \cr & = \int {\frac{4}{{4{x^2}\sqrt {3 - {{\left( {2x} \right)}^2}} }}} dx \cr & {\text{Using the given substitution}} \cr & u = 2x,\,\,\,\,\,\,\,du = 2dx,\,\,\,\,\,\,dx = \frac{1}{2}du \cr & {\text{write in terms of }}u \cr & \int {\frac{4}{{{{\left( {2x} \right)}^2}\sqrt {3 - {{\left( {2x} \right)}^2}} }}} dx = \int {\frac{4}{{{{\left( {2x} \right)}^2}\sqrt {3 - {u^2}} }}} \left( {\frac{1}{2}du} \right) \cr & = \int {\frac{2}{{{u^2}\sqrt {{{\left( {\sqrt 3 } \right)}^2} - {u^2}} }}} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 83}} \cr & \left( {83} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{u^2}\sqrt {{a^2} - {u^2}} }} = - \frac{{\sqrt {{a^2} - {u^2}} }}{{{a^2}u}}} + C \cr & {\text{take }}a = \sqrt 3 \cr & 2\int {\frac{1}{{{u^2}\sqrt {{{\left( {\sqrt 3 } \right)}^2} - {u^2}} }}} du = - \frac{{2\sqrt {{{\left( {\sqrt 3 } \right)}^2} - {u^2}} }}{{{{\left( {\sqrt 3 } \right)}^2}u}} + C \cr & {\text{simplifying}} \cr & = - \frac{{2\sqrt {3 - {u^2}} }}{{3u}} + C \cr & {\text{write in terms of }}x{\text{, and replace }}2x{\text{ for }}u \cr & = - \frac{{2\sqrt {3 - {{\left( {2x} \right)}^2}} }}{{3\left( {2x} \right)}} + C \cr & = - \frac{{\sqrt {3 - 4{x^2}} }}{{3x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.