Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 18

Answer

$$ - \frac{{\sqrt {6x - {x^2}} }}{{3x}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{x\sqrt {6x - {x^2}} }}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{1}{{x\sqrt {2\left( 3 \right)x - {x^2}} }}} dx = \int {\frac{1}{{x\sqrt {2\left( 3 \right)x - {x^2}} }}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {{a^2} - {u^2}} {} \cr & {\text{Use formula 117}} \cr & \left( {117} \right):\,\,\,\,\int {\frac{{du}}{{u\sqrt {2au - {u^2}} }}du} = - \frac{{\sqrt {2au - {u^2}} }}{{au}} + C \cr & {\text{let }}u = x,\,\,\,a = 3 \cr & \int {\frac{1}{{x\sqrt {2\left( 3 \right)x - {x^2}} }}} dx = - \frac{{\sqrt {2\left( 3 \right)x - {x^2}} }}{{3x}} + C \cr & {\text{simplifying}} \cr & \int {\frac{1}{{x\sqrt {6x - {x^2}} }}} dx = - \frac{{\sqrt {6x - {x^2}} }}{{3x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.