Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 40

Answer

$$\frac{1}{{4\sqrt 3 }}\ln \left| {\frac{{2{e^x} + \sqrt 3 }}{{2{e^x} - \sqrt 3 }}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^x}}}{{3 - 4{e^{2x}}}}dx} \cr & {\text{write the integrand as}} \cr & = \int {\frac{{{e^x}}}{{3 - {{\left( {2{e^x}} \right)}^2}}}dx} \cr & {\text{Make an appropiate }}u{\text{ - substitution }} \cr & u = 2{e^x},\,\,\,\,\,\,\,du = 2{e^x}dx,\,\,\,\,\,\,dx = \frac{{du}}{{2{e^x}}} \cr & {\text{write in terms of }}u \cr & \int {\frac{{{e^x}}}{{3 - {{\left( {2{e^x}} \right)}^2}}}dx} = \int {\frac{{{e^x}}}{{3 - {u^2}}}\left( {\frac{{du}}{{2{e^x}}}} \right)} \cr & = \frac{1}{2}\int {\frac{1}{{3 - {u^2}}}du} \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 69}} \cr & \left( {69} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{u^2} - {a^2}}} = \frac{1}{{2a}}\ln \left| {\frac{{u + a}}{{u - a}}} \right| + C} \cr & {\text{take }}a = \sqrt 3 ,\,\, \cr & \frac{1}{2}\int {\frac{1}{{3 - {u^2}}}du} = \frac{1}{{4\left( {\sqrt 3 } \right)}}\ln \left| {\frac{{u + \sqrt 3 }}{{u - \sqrt 3 }}} \right| + C \cr & {\text{simplifying}} \cr & = \frac{1}{{4\sqrt 3 }}\ln \left| {\frac{{u + \sqrt 3 }}{{u - \sqrt 3 }}} \right| + C \cr & {\text{write in terms of }}x{\text{; replace }}2{e^x}{\text{ for }}u \cr & = \frac{1}{{4\sqrt 3 }}\ln \left| {\frac{{2{e^x} + \sqrt 3 }}{{2{e^x} - \sqrt 3 }}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.