Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 15

Answer

$$\frac{x}{2}\sqrt {9 - {x^2}} + \frac{9}{2}{\sin ^{ - 1}}\frac{x}{3} + C$$

Work Step by Step

$$\eqalign{ & \int {\sqrt {9 - {x^2}} } dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\sqrt {9 - {x^2}} } dx = \int {\sqrt {{3^2} - {x^2}} } dx \cr & {\text{The integrand has a expression in the form }}\sqrt {{a^2} - {u^2}} {} \cr & {\text{Use formula 74}} \cr & \left( {90} \right):\,\,\,\,\int {\sqrt {{a^2} - {u^2}} du} = \frac{u}{2}\sqrt {{a^2} - {u^2}} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\frac{u}{a} + C\,\,\, \cr & {\text{let }}u = x,\,\,\,a = 3 \cr & \int {\sqrt {{3^2} - {x^2}} } dx = \frac{x}{2}\sqrt {{3^2} - {x^2}} + \frac{{{{\left( 3 \right)}^2}}}{2}{\sin ^{ - 1}}\frac{x}{3} + C\,\,\, \cr & {\text{simplifying}} \cr & \int {\sqrt {9 - {x^2}} } dx = \frac{x}{2}\sqrt {9 - {x^2}} + \frac{9}{2}{\sin ^{ - 1}}\frac{x}{3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.