Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 47

Answer

$$ - 2{e^{ - \sqrt x }}\left( {\sqrt x + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{e^{ - \sqrt x }}} dx \cr & {\text{Make an appropiate }}u{\text{ - substitution }} \cr & u = - \sqrt x ,\,\,\,\,\,\,\,du = - \frac{1}{{2\sqrt x }}dx,\,\,\,\,\,\,dx = - 2\sqrt x du,\,\,\,\,\,\,dx = 2udu\,\,\, \cr & {\text{write in terms of }}u \cr & \int {{e^{ - \sqrt x }}} dx = \int {{e^u}} \left( {2udu\,\,\,} \right) \cr & = 2\int {u{e^u}} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 51}} \cr & \left( {51} \right):\,\,\,\,\,\,\int {u{e^u}} du = {e^u}\left( {u - 1} \right) + C \cr & 2\int {u{e^u}} du = 2{e^u}\left( {u - 1} \right) + C \cr & {\text{write in terms of }}x{\text{; replace }} - \sqrt x {\text{ for }}u \cr & = 2{e^{ - \sqrt x }}\left( { - \sqrt x - 1} \right) + C \cr & = - 2{e^{ - \sqrt x }}\left( {\sqrt x + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.