Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 2

Answer

$$\frac{1}{{25}}\left( {\frac{4}{{4 - 5x}} + \ln \left| {4 - 5x} \right|} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{{{\left( {4 - 5x} \right)}^2}}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & = \int {\frac{{xdx}}{{{{\left( {4 + \left( { - 5} \right)x} \right)}^2}}}} \cr & {\text{The integrand has a expression in the form }}a + bu{} \cr & {\text{Use the formula 62}} \cr & \left( {62} \right):\,\,\,\int {\frac{{udu}}{{{{\left( {a + bu} \right)}^2}}}} = \frac{1}{{{b^2}}}\left[ {\frac{a}{{a + bu}} + \ln \left| {a + bu} \right|} \right] + C \cr & {\text{let }}u = x,\,\,\,a = 4{\text{ and }}b = - 5 \cr & \int {\frac{{xdx}}{{{{\left( {4 + \left( { - 5} \right)x} \right)}^2}}}} = \frac{1}{{{{\left( { - 5} \right)}^2}}}\left[ {\frac{4}{{4 + \left( { - 5} \right)x}} + \ln \left| {4 + \left( { - 5} \right)x} \right|} \right] + C \cr & {\text{simplifying}} \cr & \int {\frac{x}{{{{\left( {4 - 5x} \right)}^2}}}} dx = \frac{1}{{25}}\left( {\frac{4}{{4 - 5x}} + \ln \left| {4 - 5x} \right|} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.