Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 22

Answer

$$ - \frac{4}{{\sqrt x }}\left( {\frac{1}{2}\ln x + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\ln x}}{{\sqrt {{x^3}} }}} dx \cr & {\text{use the radical property }}\root n \of {{x^m}} = {x^{m/n}} \cr & = \int {\frac{{\ln x}}{{{x^{3/2}}}}} dx \cr & = \int {{x^{ - 3/2}}\ln x} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{The integrand has a power of }}u{\text{ multiplying basic functions}} \cr & {\text{Use formula 50}} \cr & \left( {50} \right):\,\,\,\,\,\int {{u^n}} \ln udu = \frac{{{u^{n + 1}}}}{{{{\left( {n + 1} \right)}^2}}}\left[ {\left( {n + 1} \right)\ln u - 1} \right] + C \cr & \int {{x^{ - 3/2}}\ln x} dx \to \,\,\,\,\,u = x,\,\,\,n = 3 \cr & {\text{By formula 50}} \cr & \int {{x^{ - 3/2}}\ln x} dx = \frac{{{x^{ - 3/2 + 1}}}}{{{{\left( { - 3/2 + 1} \right)}^2}}}\left[ {\left( { - 3/2 + 1} \right)\ln x - 1} \right] + C \cr & {\text{simplifying}} \cr & \int {{x^{ - 3/2}}\ln x} dx = \frac{{{x^{ - 1/2}}}}{{{{\left( { - 1/2} \right)}^2}}}\left[ {\left( { - \frac{1}{2}} \right)\ln x - 1} \right] + C \cr & \int {{x^{ - 3/2}}\ln x} dx = \frac{{{x^{ - 1/2}}}}{{1/4}}\left[ { - \frac{1}{2}\ln x - 1} \right] + C \cr & \int {{x^{ - 3/2}}\ln x} dx = \frac{4}{{\sqrt x }}\left( { - \frac{1}{2}\ln x - 1} \right) + C \cr & \int {{x^{ - 3/2}}\ln x} dx = - \frac{4}{{\sqrt x }}\left( {\frac{1}{2}\ln x + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.