Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 31

Answer

$$ - \frac{1}{4}{x^2}\sqrt {2 - 4{x^4}} + \frac{1}{4}{\sin ^{ - 1}}\left( {\sqrt 2 {x^2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{4{x^5}}}{{\sqrt {2 - 4{x^4}} }}} dx,\,\,\,\,u = 2{x^2} \cr & = \int {\frac{{{{\left( {2{x^2}} \right)}^2}}}{{\sqrt {2 - {{\left( {2{x^2}} \right)}^2}} }}\left( {4x} \right)} dx \cr & {\text{Using the given substitution}} \cr & u = 2{x^2},\,\,\,\,\,\,\,du = 4xdx,\,\,\,\,\,\,dx = \frac{1}{{4x}}du \cr & {\text{write in terms of }}u \cr & \int {\frac{{{{\left( {2{x^2}} \right)}^2}}}{{\sqrt {2 - {{\left( {2{x^2}} \right)}^2}} }}\left( {4x} \right)} dx = \int {\frac{{{u^2}}}{{\sqrt {2 - {u^2}} }}\left( {\frac{1}{4}} \right)} du \cr & = \frac{1}{4}\int {\frac{{{u^2}}}{{\sqrt {{{\left( {\sqrt 2 } \right)}^2} - {u^2}} }}} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 81}} \cr & \left( {81} \right):\,\,\,\,\,\,\int {\frac{{{u^2}du}}{{\sqrt {{a^2} - {u^2}} }} = - \frac{u}{2}\sqrt {{a^2} - {u^2}} + \frac{{{a^2}}}{2}{{\sin }^{ - 1}}\left( {\frac{u}{a}} \right) + C} \cr & {\text{take }}a = \sqrt 2 \cr & \frac{1}{4}\int {\frac{{{u^2}}}{{\sqrt {{{\left( {\sqrt 2 } \right)}^2} - {u^2}} }}} du = - \frac{u}{8}\sqrt {{{\left( {\sqrt 2 } \right)}^2} - {u^2}} + \frac{{{{\left( {\sqrt 2 } \right)}^2}}}{8}{\sin ^{ - 1}}\left( {\frac{u}{{\sqrt 2 }}} \right) + C \cr & {\text{simplifying}} \cr & = - \frac{u}{8}\sqrt {2 - {u^2}} + \frac{1}{4}{\sin ^{ - 1}}\left( {\frac{u}{{\sqrt 2 }}} \right) + C \cr & {\text{write in terms of }}x{\text{, and replace }}2{x^2}{\text{ for }}u \cr & = - \frac{{2{x^2}}}{8}\sqrt {2 - {{\left( {2{x^2}} \right)}^2}} + \frac{1}{4}{\sin ^{ - 1}}\left( {\frac{{2{x^2}}}{{\sqrt 2 }}} \right) + C \cr & = - \frac{1}{4}{x^2}\sqrt {2 - 4{x^4}} + \frac{1}{4}{\sin ^{ - 1}}\left( {\sqrt 2 {x^2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.