Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 3

Answer

$$\frac{1}{5}\ln \left| {\frac{x}{{2x + 5}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{x\left( {2x + 5} \right)}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & = \int {\frac{1}{{x\left( {5 + 2x} \right)}}} dx \cr & {\text{The integrand has a expression in the form }}a + bu{} \cr & {\text{Use formula 65}} \cr & \left( {65} \right):\,\,\,\,\,\int {\frac{{du}}{{u\left( {a + bu} \right)}}} = \frac{1}{a}\ln \left| {\frac{u}{{a + bu}}} \right| + C \cr & {\text{let }}u = x,\,\,\,a = 5{\text{ and }}b = 2 \cr & \int {\frac{1}{{x\left( {5 + 2x} \right)}}} dx = \frac{1}{5}\ln \left| {\frac{x}{{5 + 2x}}} \right| + C \cr & or \cr & = \frac{1}{5}\ln \left| {\frac{x}{{2x + 5}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.