Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 38

Answer

$$\frac{1}{{12}}\left( {2\ln x + 1} \right)\sqrt {4\ln x - 1} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\ln x}}{{x\sqrt {4\ln x - 1} }}dx} \cr & {\text{Make an appropiate }}u{\text{ - substitution }} \cr & u = \ln x,\,\,\,\,\,\,\,du = \frac{1}{x}dx,\,\,\,\,\,\,dx = xdu \cr & {\text{write in terms of }}u \cr & \int {\frac{{\ln x}}{{x\sqrt {4\ln x - 1} }}dx} = \int {\frac{u}{{x\sqrt {4u - 1} }}\left( {xdu} \right)} \cr & = \int {\frac{u}{{\sqrt {4u - 1} }}du} \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 105}} \cr & \left( {105} \right):\,\,\,\,\,\,\int {\frac{{udu}}{{\sqrt {a + bu} }} = \frac{2}{{3{b^2}}}\left( {bu - 2a} \right)\sqrt {a + bu} + C} \cr & {\text{take }}a = - 1,\,\,\,b = 4 \cr & \int {\frac{u}{{\sqrt {4u - 1} }}du} = \frac{2}{{3{{\left( 4 \right)}^2}}}\left( {4u - 2\left( { - 1} \right)} \right)\sqrt {4u - 1} + C \cr & {\text{simplifying}} \cr & = \frac{2}{{48}}\left( {4u + 2} \right)\sqrt {4u - 1} + C \cr & = \frac{1}{{12}}\left( {2u + 1} \right)\sqrt {4u - 1} + C \cr & {\text{write in terms of }}x{\text{ replace }}\ln x{\text{ for }}u \cr & = \frac{1}{{12}}\left( {2\ln x + 1} \right)\sqrt {4\ln x - 1} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.