Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 17

Answer

$$\sqrt {4 - {x^2}} - 2\ln \left| {\frac{{2 + \sqrt {4 - {x^2}} }}{x}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {4 - {x^2}} }}{x}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{{\sqrt {4 - {x^2}} }}{x}} dx = \int {\frac{{\sqrt {{2^2} - {x^2}} }}{x}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {{a^2} - {u^2}} {} \cr & {\text{Use formula 79}} \cr & \left( {80} \right):\,\,\,\,\int {\frac{{\sqrt {{a^2} - {u^2}} }}{u}du} = \sqrt {{a^2} - {u^2}} - a\ln \left| {\frac{{a + \sqrt {{a^2} - {u^2}} }}{u}} \right| + C \cr & {\text{let }}u = x,\,\,\,a = 2 \cr & \int {\frac{{\sqrt {{2^2} - {x^2}} }}{x}} dx = \sqrt {{2^2} - {x^2}} - 2\ln \left| {\frac{{2 + \sqrt {{2^2} - {x^2}} }}{x}} \right| + C \cr & {\text{simplifying}} \cr & \int {\frac{{\sqrt {4 - {x^2}} }}{x}} dx = \sqrt {4 - {x^2}} - 2\ln \left| {\frac{{2 + \sqrt {4 - {x^2}} }}{x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.