Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 36

Answer

$$\frac{1}{3}\left( {3x + 1} \right)\left[ {\ln \left( {3x + 1} \right) - 1} \right] + C$$

Work Step by Step

$$\eqalign{ & \int {\ln \left( {3x + 1} \right)} dx,\,\,\,\,u = 3x + 1 \cr & {\text{Using the given substitution}} \cr & u = 3x + 1,\,\,\,\,\,\,\,du = 3dx,\,\,\,\,\,dx = \frac{{du}}{3}\, \cr & {\text{write in terms of }}u \cr & \int {\ln \left( {3x + 1} \right)} dx = \int {\ln u} \left( {\frac{{du}}{3}} \right) \cr & = \frac{1}{3}\int {\ln u} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 11}} \cr & \left( {11} \right):\,\,\,\,\,\,\int {\ln u} du = u\ln u - u + C \cr & \frac{1}{3}\int {\ln u} du = \frac{1}{3}u\ln u - \frac{1}{3}u + C \cr & {\text{write in terms of }}x{\text{, and replace }}3x + 1{\text{ for }}u \cr & = \frac{1}{3}\left( {3x + 1} \right)\ln \left( {3x + 1} \right) - \frac{1}{3}\left( {3x + 1} \right) + C \cr & {\text{factoring}} \cr & = \frac{1}{3}\left( {3x + 1} \right)\left[ {\ln \left( {3x + 1} \right) - 1} \right] + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.