Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 30

Answer

$$\frac{{{x^2}}}{4}\sqrt {2{x^4} + 3} + \frac{3}{{4\sqrt 2 }}\ln \left( {\sqrt 2 {x^2} + \sqrt {2{x^4} + 3} } \right) + C$$

Work Step by Step

$$\eqalign{ & \int {x\sqrt {2{x^4} + 3} } dx,\,\,\,\,u = \sqrt 2 {x^2} \cr & = \int {x\sqrt {{{\left( {\sqrt 2 {x^2}} \right)}^2} + {{\left( {\sqrt 3 } \right)}^2}} } dx \cr & {\text{Using the given substitution}} \cr & u = \sqrt 2 {x^2},\,\,\,\,\,\,\,du = 2\sqrt 2 xdx,\,\,\,\,\,\,dx = \frac{1}{{2\sqrt 2 x}}du \cr & {\text{write in terms of }}u \cr & \int {x\sqrt {{{\left( {\sqrt 2 {x^2}} \right)}^2} + {{\left( {\sqrt 3 } \right)}^2}} } dx = \int {x\sqrt {{u^2} + {{\left( {\sqrt 3 } \right)}^2}} } \left( {\frac{1}{{2\sqrt 2 x}}du} \right) \cr & = \frac{1}{{2\sqrt 2 }}\int {\sqrt {{u^2} + {{\left( {\sqrt 3 } \right)}^2}} } du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 72}} \cr & \left( {72} \right):\,\,\,\,\,\,\int {\sqrt {{u^2} + {a^2}} du = \frac{u}{2}\sqrt {{u^2} + {a^2}} + \frac{{{a^2}}}{2}\ln \left( {u + \sqrt {{u^2} + {a^2}} } \right) + C} \cr & {\text{take }}a = \sqrt 3 \cr & \frac{1}{{2\sqrt 2 }}\int {\sqrt {{u^2} + {{\left( {\sqrt 3 } \right)}^2}} } du = \frac{u}{{4\sqrt 2 }}\sqrt {{u^2} + {{\left( {\sqrt 3 } \right)}^2}} + \frac{{{{\left( {\sqrt 3 } \right)}^2}}}{{4\sqrt 2 }}\ln \left( {u + \sqrt {{u^2} + {{\left( {\sqrt 3 } \right)}^2}} } \right) + C \cr & {\text{simplifying}} \cr & = \frac{u}{{4\sqrt 2 }}\sqrt {{u^2} + 3} + \frac{3}{{4\sqrt 2 }}\ln \left( {u + \sqrt {{u^2} + 3} } \right) + C \cr & {\text{write in terms of }}x{\text{, and replace }}\sqrt 2 {x^2}{\text{ for }}u \cr & = \frac{{\sqrt 2 {x^2}}}{{4\sqrt 2 }}\sqrt {{{\left( {\sqrt 2 {x^2}} \right)}^2} + 3} + \frac{3}{{4\sqrt 2 }}\ln \left( {\sqrt 2 {x^2} + \sqrt {{{\left( {\sqrt 2 {x^2}} \right)}^2} + 3} } \right) + C \cr & = \frac{{{x^2}}}{4}\sqrt {2{x^4} + 3} + \frac{3}{{4\sqrt 2 }}\ln \left( {\sqrt 2 {x^2} + \sqrt {2{x^4} + 3} } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.