Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 13

Answer

$$\frac{x}{2}\sqrt {{x^2} + 4} - 2\ln \left( {x + \sqrt {{x^2} + 4} } \right) + C\,\,\,$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^2}}}{{\sqrt {{x^2} + 4} }}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{{{x^2}}}{{\sqrt {{x^2} + 4} }}} dx = \int {\frac{{{x^2}}}{{\sqrt {{x^2} + {{\left( 2 \right)}^2}} }}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {{u^2} + {a^2}} {} \cr & {\text{Use formula 95}} \cr & \left( {95} \right):\,\,\,\,\int {\frac{{{u^2}}}{{\sqrt {{u^2} + {a^2}} }}du} = \frac{u}{2}\sqrt {{u^2} + {a^2}} - \frac{{{a^2}}}{2}\ln \left( {u + \sqrt {{u^2} + {a^2}} } \right) + C\,\,\, \cr & {\text{let }}u = x,\,\,\,a = 2 \cr & \int {\frac{{{x^2}}}{{\sqrt {{x^2} + {{\left( 2 \right)}^2}} }}} dx = \frac{x}{2}\sqrt {{x^2} + {{\left( 2 \right)}^2}} - \frac{{{{\left( 2 \right)}^2}}}{2}\ln \left( {x + \sqrt {{x^2} + {{\left( 2 \right)}^2}} } \right) + C\,\,\, \cr & {\text{simplifying}} \cr & \int {\frac{{{x^2}}}{{\sqrt {{x^2} + 4} }}} dx = \frac{x}{2}\sqrt {{x^2} + 4} - 2\ln \left( {x + \sqrt {{x^2} + 4} } \right) + C\,\,\, \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.