Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 24

Answer

$$\frac{{{e^x}}}{5}\left( {\cos 2x + 2\sin 2x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{e^x}\cos 2x} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{The integrand has a product of trigonometric and exponential functions}} \cr & {\text{Use formula 43}} \cr & \left( {43} \right):\,\,\,\,\,\int {{e^{au}}\sin bu} du = \frac{{{e^{au}}}}{{{a^2} + {b^2}}}\left( {a\cos bu + b\sin bu} \right) + C \cr & \int {{e^x}\cos 2x} dx \to \,\,\,a = 1,\,\,\,b = 2 \cr & {\text{By formula }}42 \cr & \int {{e^x}\cos 2x} dx = \frac{{{e^x}}}{{{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2}}}\left( {1\cos 2x + 2\sin 2x} \right) + C \cr & {\text{simplifying}} \cr & \int {{e^x}\cos 2x} dx = \frac{{{e^x}}}{{1 + 4}}\left( {\cos 2x + 2\sin 2x} \right) + C \cr & \int {{e^x}\cos 2x} dx = \frac{{{e^x}}}{5}\left( {\cos 2x + 2\sin 2x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.