Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 29

Answer

$$\frac{1}{2}\ln \left| {2x + \sqrt {4{x^2} - 9} } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt {4{x^2} - 9} }}} dx,\,\,\,\,u = 2x \cr & = \int {\frac{1}{{\sqrt {{{\left( {2x} \right)}^2} - {3^2}} }}} dx \cr & {\text{Using the given substitution}} \cr & u = 2x,\,\,\,\,\,\,\,du = 2dx,\,\,\,\,\,\,dx = \frac{1}{2}du \cr & {\text{write in terms of }}u \cr & \int {\frac{1}{{\sqrt {{{\left( {2x} \right)}^2} - {3^2}} }}} dx = \int {\frac{1}{{\sqrt {{u^2} - {3^2}} }}} \left( {\frac{1}{2}du} \right) \cr & = \frac{1}{2}\int {\frac{1}{{\sqrt {{u^2} - {3^2}} }}} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 76}} \cr & \left( {76} \right):\,\,\,\,\,\,\int {\frac{{du}}{{\sqrt {{u^2} - {a^2}} }} = \ln \left| {u + \sqrt {{u^2} - {a^2}} } \right| + C} \cr & {\text{take }}a = 3 \cr & \frac{1}{2}\int {\frac{1}{{\sqrt {{u^2} - {3^2}} }}} du = \frac{1}{2}\ln \left| {u + \sqrt {{u^2} - {3^2}} } \right| + C \cr & {\text{simplifying}} \cr & = \frac{1}{2}\ln \left| {u + \sqrt {{u^2} - 9} } \right| + C \cr & {\text{write in terms of }}x{\text{, and replace }}2x{\text{ for }}u \cr & = \frac{1}{2}\ln \left| {2x + \sqrt {{{\left( {2x} \right)}^2} - 9} } \right| + C \cr & = \frac{1}{2}\ln \left| {2x + \sqrt {4{x^2} - 9} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.