Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 1

Answer

$$\frac{4}{9}\left( {3x + \ln \left| {3x - 1} \right|} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{4x}}{{3x - 1}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{{4x}}{{3x - 1}}} dx = 4\int {\frac{{xdx}}{{ - 1 + 3x}}} \cr & {\text{The integrand has a expression in the form }}a + bu{}{\text{}} \cr & {\text{Use the formula 60}} \cr & \left( {60} \right):\,\,\,\,\,\int {\frac{{udu}}{{a + bu}}} = \frac{1}{{{b^2}}}\left[ {bu - a\ln \left| {a + bu} \right|} \right] + C \cr & {\text{let }}u = x,\,\,\,a = - 1{\text{ and }}b = 3 \cr & 4\int {\frac{{xdx}}{{ - 1 + 3x}}} = 4\left( {\frac{1}{{{{\left( 3 \right)}^2}}}\left[ {3x - \left( { - 1} \right)\ln \left| { - 1 + 3x} \right|} \right]} \right) + C \cr & {\text{simplifying}} \cr & \int {\frac{{4x}}{{3x - 1}}} dx = \frac{4}{9}\left( {3x + \ln \left| {3x - 1} \right|} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.