Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 12

Answer

$$ - \frac{{\sqrt {{x^2} - 5} }}{x} + \ln \left| {x + \sqrt {{x^2} - 5} } \right| + C\,\,\,$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {{x^2} - 5} }}{{{x^2}}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{{\sqrt {{x^2} - 5} }}{{{x^2}}}} dx = \int {\frac{{\sqrt {{x^2} - {{\left( {\sqrt 5 } \right)}^2}} }}{{{x^2}}}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {{u^2} - {a^2}} {} \cr & {\text{Use formula 94}} \cr & \left( {94} \right):\,\,\,\,\int {\frac{{\sqrt {{u^2} - {a^2}} }}{{{u^2}}}du} = - \frac{{\sqrt {{u^2} - {a^2}} }}{u} + \ln \left| {u + \sqrt {{u^2} - {a^2}} } \right| + C\,\,\, \cr & {\text{let }}u = x,\,\,\,a = \sqrt 5 \cr & \int {\frac{{\sqrt {{x^2} - {{\left( {\sqrt 5 } \right)}^2}} }}{{{x^2}}}} dx = - \frac{{\sqrt {{x^2} - {{\left( {\sqrt 5 } \right)}^2}} }}{x} + \ln \left| {x + \sqrt {{x^2} - {{\left( {\sqrt 5 } \right)}^2}} } \right| + C\,\,\, \cr & {\text{simplifying}} \cr & \int {\frac{{\sqrt {{x^2} - 5} }}{{{x^2}}}} dxdx = - \frac{{\sqrt {{x^2} - 5} }}{x} + \ln \left| {x + \sqrt {{x^2} - 5} } \right| + C\,\,\, \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.