Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 34

Answer

$$ - \frac{1}{4}{e^{ - 2x}} - \frac{1}{8}\sin \left( {2{e^{ - 2x}}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{e^{ - 2x}}{{\cos }^2}\left( {{e^{ - 2x}}} \right)} dx,\,\,\,\,u = {e^{ - 2x}} \cr & {\text{Using the given substitution}} \cr & u = {e^{ - 2x}},\,\,\,\,\,\,\,du = - 2{e^{ - 2x}}dx,\,\,\,\,\,dx = - \frac{{du}}{{2{e^{ - 2x}}}}\, \cr & {\text{write in terms of }}u \cr & \int {{e^{ - 2x}}{{\cos }^2}\left( {{e^{ - 2x}}} \right)} dx = \int {{e^{ - 2x}}{{\cos }^2}u} \left( { - \frac{{du}}{{2{e^{ - 2x}}}}\,} \right) \cr & = \int {{{\cos }^2}u\left( { - \frac{1}{2}du} \right)} \cr & = - \frac{1}{2}\int {{{\cos }^2}u} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 27}} \cr & \left( {27} \right):\,\,\,\,\,\,\int {{{\cos }^2}udu} = \frac{1}{2}u + \frac{1}{4}\sin 2u + C \cr & - \frac{1}{2}\int {{{\cos }^2}u} du = - \frac{1}{4}u - \frac{1}{8}\sin 2u + C \cr & {\text{write in terms of }}x{\text{, and replace }}{e^{ - 2x}}{\text{ for }}u \cr & = - \frac{1}{4}{e^{ - 2x}} - \frac{1}{8}\sin \left( {2{e^{ - 2x}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.