Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 20

Answer

$$ - \frac{{\cos 7x}}{{14}} + \frac{{\cos 3x}}{6} + C$$

Work Step by Step

$$\eqalign{ & \int {\sin 2x\cos 5x} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{The integrand has a product of trigonometric functions}} \cr & {\text{Use formula 40}} \cr & \left( {40} \right):\,\,\,\,\,\int {\sin mu\cos nu} du = - \frac{{\cos \left( {m + n} \right)u}}{{2\left( {m + n} \right)}} - \frac{{\cos \left( {m - n} \right)u}}{{2\left( {m - n} \right)}} + C \cr & \int {\sin 2x\cos 5x} dx\,\, \Rightarrow \,\,\,\,m = 2,\,\,\,n = 5 \cr & {\text{Then by formula 40}} \cr & \int {\sin 2x\cos 5x} dx = - \frac{{\cos \left( {2 + 5} \right)x}}{{2\left( {2 + 5} \right)}} - \frac{{\cos \left( {2 - 5} \right)x}}{{2\left( {2 - 5} \right)}} + C \cr & {\text{simplifying}} \cr & \int {\sin 2x\cos 5x} dx = - \frac{{\cos 7x}}{{14}} - \frac{{\cos 3x}}{{ - 6}} + C \cr & \int {\sin 2x\cos 5x} dx = - \frac{{\cos 7x}}{{14}} + \frac{{\cos 3x}}{6} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.