Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 23

Answer

$$ - \frac{{{e^{ - 2x}}}}{{13}}\left( {2\sin 3x + 3\cos 3x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{e^{ - 2x}}\sin 3x} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{The integrand has a product of trigonometric and exponential functions}} \cr & {\text{Use formula 42}} \cr & \left( {42} \right):\,\,\,\,\,\int {{e^{au}}\sin bu} du = \frac{{{e^{au}}}}{{{a^2} + {b^2}}}\left( {a\sin bu - b\cos bu} \right) + C \cr & \int {{e^{ - 2x}}\sin 3x} dx \to \,\,\,a = - 2,\,\,\,b = 3 \cr & {\text{By formula }}42 \cr & \int {{e^{ - 2x}}\sin 3x} dx = \frac{{{e^{ - 2x}}}}{{{{\left( { - 2} \right)}^2} + {{\left( 3 \right)}^2}}}\left( { - 2\sin 3x - \left( 3 \right)\cos 3x} \right) + C \cr & {\text{simplifying}} \cr & \int {{e^{ - 2x}}\sin 3x} dx = \frac{{{e^{ - 2x}}}}{{4 + 9}}\left( { - 2\sin 3x - 3\cos 3x} \right) + C \cr & \int {{e^{ - 2x}}\sin 3x} dx = - \frac{{{e^{ - 2x}}}}{{13}}\left( {2\sin 3x + 3\cos 3x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.