Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 5

Answer

$$\frac{1}{5}\left( {x - 1} \right){\left( {3 + 2x} \right)^{3/2}} + C$$

Work Step by Step

$$\eqalign{ & \int {x\sqrt {2x + 3} } dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & = \int {x\sqrt {3 + 2x} } dx \cr & {\text{The integrand has a expression in the form }}\sqrt {a + bu} {} \cr & {\text{Use formula 102}} \cr & \left( {102} \right):\,\,\,\,\int {u\sqrt {a + bu} du} = \frac{2}{{15{b^2}}}\left( {3bu - 2a} \right){\left( {a + bu} \right)^{3/2}} + C \cr & {\text{let }}u = x,\,\,\,a = 3{\text{ and }}b = 2 \cr & \int {x\sqrt {3 + 2x} } dx = \frac{2}{{15{{\left( 2 \right)}^2}}}\left( {3\left( 2 \right)x - 2\left( 3 \right)} \right){\left( {3 + 2x} \right)^{3/2}} + C \cr & {\text{simplifying}} \cr & \int {x\sqrt {2x + 3} } dx = \frac{1}{{30}}\left( {6x - 6} \right){\left( {3 + 2x} \right)^{3/2}} + C \cr & \int {x\sqrt {2x + 3} } dx = \frac{6}{{30}}\left( {x - 1} \right){\left( {3 + 2x} \right)^{3/2}} + C \cr & \int {x\sqrt {2x + 3} } dx = \frac{1}{5}\left( {x - 1} \right){\left( {3 + 2x} \right)^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.