Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 7

Answer

$$\frac{1}{2}\ln \left| {\frac{{\sqrt {4 - 3x} - 2}}{{\sqrt {4 - 3x} + 2}}} \right| + C\,$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{x\sqrt {4 - 3x} }}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & = \int {\frac{x}{{\sqrt {2 + \left( { - 1} \right)x} }}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {a + bu} {} \cr & {\text{Use formula 108}} \cr & \left( {108} \right):\,\,\,\,\int {\frac{{du}}{{u\sqrt {a + bu} }}} = \frac{1}{{\sqrt a }}\ln \left| {\frac{{\sqrt {a + bu} - \sqrt a }}{{\sqrt {a + bu} + \sqrt a }}} \right| + C\,\,\,\left( {a > 0} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{2}{{\sqrt { - a} }}{\tan ^{ - 1}}\sqrt {\frac{{a + bu}}{{ - a}}} + C\,\,\,\left( {a < 0} \right) \cr & \int {\frac{1}{{x\sqrt {4 - 3x} }}} dx \cr & {\text{let }}u = x,\,\,\,a = 4{\text{ and }}b = - 3 \cr & a > 0,\,\, \cr & = \frac{1}{{\sqrt a }}\ln \left| {\frac{{\sqrt {a + bu} - \sqrt a }}{{\sqrt {a + bu} + \sqrt a }}} \right| + C\,\,\,\left( {a > 0} \right) \cr & {\text{substituting }}a,{\text{ }}b{\text{ and }}x \cr & = \frac{1}{{\sqrt 4 }}\ln \left| {\frac{{\sqrt {4 - 3x} - \sqrt 4 }}{{\sqrt {4 - 3x} + \sqrt 4 }}} \right| + C\,\, \cr & {\text{simplifying}} \cr & = \frac{1}{2}\ln \left| {\frac{{\sqrt {4 - 3x} - 2}}{{\sqrt {4 - 3x} + 2}}} \right| + C\, \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.