Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 33

Answer

$$\ln \sqrt x - \frac{1}{4}\sin \left( {\ln {x^2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\sin }^2}\left( {\ln x} \right)}}{x}} dx,\,\,\,\,u = \ln x \cr & {\text{Using the given substitution}} \cr & u = \ln x,\,\,\,\,\,\,\,du = \frac{1}{x}dx,\, \cr & {\text{write in terms of }}u \cr & \int {\frac{{{{\sin }^2}\left( {\ln x} \right)}}{x}} dx = \int {{{\sin }^2}u} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 26}} \cr & \left( {26} \right):\,\,\,\,\,\,\int {{{\sin }^2}udu = \frac{1}{2}u - \frac{1}{4}\sin 2u} + C \cr & = \frac{1}{2}u - \frac{1}{4}\sin 2u + C \cr & {\text{write in terms of }}x{\text{, and replace }}\ln x{\text{ for }}u \cr & = \frac{1}{2}\ln x - \frac{1}{4}\sin \left( {2\ln x} \right) + C \cr & {\text{using logarithmic properties}} \cr & = \ln \sqrt x - \frac{1}{4}\sin \left( {\ln {x^2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.