Answer
$4\ln 2\approx 2.773$
Work Step by Step
Area between curves $f(x)$ and $g(x)$, where $g(x)\geq f(x)$ on $[a,b], $ is
$\displaystyle \int_{a}^{b}[g(x)-f(x)]dx=\int_{1}^{5}(\ln 2x-\ln x)dx\qquad $... $(\ln MN=\ln M+\ln N)$
$=\displaystyle \int_{1}^{5}(\ln 2+\ln x-\ln x)dx$
$=\int_{1}^{5}(\displaystyle \ln 2)dx$
$=\ln 2\cdot [x]_{1}^{5}$
$=\ln 2\cdot(5-1)$
$=4\ln 2$