Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 40

Answer

$$\ln \left| {4{r^2} - 5} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{8rdr}}{{4{r^2} - 5}}} \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = 4{r^2} - 5,{\text{ so that }}du = 8rdr \cr & {\text{Write the integral in terms of }}u \cr & \int {\frac{{8rdr}}{{4{r^2} - 5}}} = \int {\frac{{du}}{u}} \cr & {\text{integrate }} \cr & = \ln \left| u \right| + C \cr & {\text{write in terms of }}y{\text{; replace }}4{r^2} - 5{\text{ for }}u \cr & = \ln \left| {4{r^2} - 5} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.