Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 69

Answer

$ a.\quad$ Absolute maximum at $(0,0)$ Absolute minimum at $(\displaystyle \frac{\pi}{3},-\ln 2)$ $ b.\quad$ Absolute maximum at $(1,2)$ Absolute minimum at $(\displaystyle \frac{1}{2},0.769)$ and $(2,0.769)$

Work Step by Step

$ a.\quad$ Apply the chain rule: $\displaystyle \frac{d}{dx}[f(x)]=\frac{1}{\cos x}\cdot(-\sin x)=-\tan x$ $f'(0)=0$, when$\quad -\tan x=0 \qquad $that is, when $x=0.$ $f(0)=\ln[\cos 0]=\ln 1=0$ $f(-\displaystyle \frac{\pi}{4})=\ln[\cos(-\frac{\pi}{4})]=\ln\frac{1}{\sqrt{2}}=\ln 2^{-1/2}=-\frac{1}{2}\ln 2$ $f(\displaystyle \frac{\pi}{3})=\ln[\cos(\frac{\pi}{3})]=\ln\frac{1}{2}=\ln 2^{-1}=-\ln 2$ For the first derivative test, tan is negative on $(-\displaystyle \frac{\pi}{4},0)$ and positive on $(0,\displaystyle \frac{\pi}{3})$. $f'=-\tan x$, so f increases on $(-\displaystyle \frac{\pi}{4},0)$ and decreases on $(0,\displaystyle \frac{\pi}{3})$. Thus, we have: Absolute maximum at $(0,0)$ Absolute minimum at $(\displaystyle \frac{\pi}{3},-\ln 2)$ $ b.\quad$ Apply the chain rule: $\displaystyle \frac{d}{dx}[f(x)]=-\sin(\ln x)\cdot\frac{1}{x}=-\frac{\sin(\ln x)}{x}$ $f'(0)=0$ when $\ln x=0$, or, when $x=1$ $f(\displaystyle \frac{1}{2})\approx 0.769$ $f(1)=1$ $f(2)\approx 0.769$ For the first derivative test, we evaluate $f'(0.7)\approx+0.4988,$ $f'(1.5)\approx-0.26296$ So f increases on $(1/2,1)$ and decreases on $(1,2)$ Thus, we have: Absolute maximum at $(1,2)$ Absolute minimum at $(\displaystyle \frac{1}{2},0.769)$ and $(2,0.769)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.