Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 47

Answer

$$\ln \left| {6 + 3\tan t} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{3{{\sec }^2}t}}{{6 + 3\tan t}}} dt \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = 6 + 3\tan t,{\text{ so that }}du = 3{\sec ^2}tdt \cr & dt = \frac{{du}}{{3{{\sec }^2}t}} \cr & {\text{write the integral in terms of }}u \cr & \int {\frac{{3{{\sec }^2}t}}{{6 + 3\tan t}}} dt = \int {\frac{{3{{\sec }^2}t}}{u}} \left( {\frac{{du}}{{3{{\sec }^2}t}}} \right) \cr & = \int {\frac{1}{u}} \left( {\frac{{du}}{1}} \right) \cr & = \int {\frac{1}{u}} du \cr & {\text{integrate }} \cr & = \ln \left| u \right| + C \cr & {\text{write in terms of }}t{\text{; replace }}6 + 3\tan t{\text{ for }}u \cr & = \ln \left| {6 + 3\tan t} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.