Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 14

Answer

$$\frac{{3{{\left( {\ln x} \right)}^2}}}{x}$$

Work Step by Step

$$\eqalign{ & y = {\left( {\ln x} \right)^3} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {\ln x} \right)}^3}} \right] \cr & {\text{use the general power rule for derivatives }}\cr & \frac{d}{{dx}}\left[ {{u^n}} \right] = n{u^{n - 1}}\frac{{du}}{{dx}} \cr & \frac{{dy}}{{dx}} = 3{\left( {\ln x} \right)^{3 - 1}}\frac{d}{{dx}}\left[ {\ln x} \right] \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{dx}} = 3{\left( {\ln x} \right)^2}\left( {\frac{1}{x}} \right) \cr & \frac{{dy}}{{dx}} = \frac{{3{{\left( {\ln x} \right)}^2}}}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.