Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 28

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{1-x^2}}$$

Work Step by Step

$$\eqalign{ & y = \frac{1}{2}\ln \frac{{1 + x}}{{1 - x}} \cr & {\text{Use the quotient property for logarithms}} \cr & y = \frac{1}{2}\left( {\ln \left( {1 + x} \right) - \ln \left( {1 - x} \right)} \right) \cr & y = \frac{1}{2}\ln \left( {1 + x} \right) - \frac{1}{2}\ln \left( {1 - x} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{1}{2}\ln \left( {1 + x} \right)} \right] - \frac{d}{{dx}}\left[ {\frac{1}{2}\ln \left( {1 - x} \right)} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {1 + x} \right)} \right] - \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {1 - x} \right)} \right] \cr & {\text{Solve the derivatives and simplify}} \cr & \frac{{dy}}{{dx}} = \frac{1}{2}\left( {\frac{1}{{1 + x}}} \right) - \frac{1}{2}\left( {\frac{{ - 1}}{{1 - x}}} \right) \cr & \frac{{dy}}{{dx}} = \frac{1}{2}\left( {\frac{1}{{1 + x}} + \frac{1}{{1 - x}}} \right) \cr & \frac{{dy}}{{dx}} = \frac{1}{2}\left( {\frac{{1 - x + 1 + x}}{{1-x^2}}} \right) \cr & \frac{{dy}}{{dx}} = \frac{1}{{1-x^2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.