Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 10

Answer

$$ - \frac{1}{x}$$

Work Step by Step

$$\eqalign{ & y = \ln \frac{{10}}{x} \cr & {\text{use the property of logarithms }}\ln \frac{a}{b} = \ln a - \ln b \cr & y = \ln 10 - \ln x \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln 10 - \ln x} \right] \cr & {\text{use the sum rule for derivatives}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln 10} \right] - \frac{d}{{dx}}\left[ {\ln x} \right] \cr & {\text{use the formula }}\frac{d}{{dx}}\ln u = \frac{1}{u}\frac{{du}}{{dx}}{\text{, }}u > 0\cr & {\text{ where }}u{\text{ is any differentiable function of }}x \cr & {\text{then:}} \cr & \frac{{dy}}{{dx}} = 0 - \left( {\frac{1}{x}} \right) \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{dx}} = - \frac{1}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.