Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 3

Answer

(a) $\ln 5$ (b) $ \ln (x-3) $ (c) $ 2\ln t $

Work Step by Step

(a) Since \begin{align*} \ln \sin\theta - \ln \frac{\sin \theta}{5} &= \ln \sin\theta - \ln \sin \theta +\ln 5 \\ &=\ln 5 \end{align*} (b) Since \begin{align*} \ln \left(3 x^{2}-9 x\right)+\ln \left(\frac{1}{3 x}\right)&= \ln \left(3 x^{2}-9 x\right) \left(\frac{1}{3 x}\right)\\ &= \ln (x-3) \end{align*} (c) \begin{align*} \frac{1}{2} \ln \left(4 t^{4}\right)-\ln 2&=\frac{1}{2} \ln \left(2^2 t^{4}\right)-\ln 2\\ &=\frac{1}{2}\left( \ln (2^2 )+\ln (t^{4})\right)-\ln 2 \\ &=\left( \ln (2 )+2\ln t \right)-\ln 2\\ &=2\ln t \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.