Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 33

Answer

$$\frac{{dy}}{{dx}} = \frac{{10x}}{{{x^2} + 1}} + \frac{1}{{2\left( {1 - x} \right)}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\frac{{{{\left( {{x^2} + 1} \right)}^5}}}{{\sqrt {1 - x} }}} \right) \cr & {\text{write the radical }}\sqrt {1 - x} {\text{ as }}{\left( {1 - x} \right)^{1/2}} \cr & y = \ln \left( {\frac{{{{\left( {{x^2} + 1} \right)}^5}}}{{{{\left( {1 - x} \right)}^{1/2}}}}} \right) \cr & {\text{use the quotient property for logarithms}} \cr & y = \ln {\left( {{x^2} + 1} \right)^5} - \ln {\left( {1 - x} \right)^{1/2}} \cr & {\text{use the power property for logarithms}} \cr & y = 5\ln \left( {{x^2} + 1} \right) - \frac{1}{2}\ln \left( {1 - x} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = 5\frac{d}{{dx}}\left[ {\ln \left( {{x^2} + 1} \right)} \right] - \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {1 - x} \right)} \right] \cr & {\text{solve the derivatives using }}\frac{d}{{dx}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dx}} \cr & \frac{{dy}}{{dx}} = 5\left( {\frac{{2x}}{{{x^2} + 1}}} \right) - \frac{1}{2}\left( {\frac{{ - 1}}{{1 - x}}} \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{dx}} = \frac{{10x}}{{{x^2} + 1}} + \frac{1}{{2\left( {1 - x} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.