Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 54

Answer

$$2\sqrt {\ln \left( {\sec x + \tan x} \right)} $$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sec xdx}}{{\sqrt {\ln \left( {\sec x + \tan x} \right)} }}} \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = \ln \left( {\sec x + \tan x} \right),\cr & {\text{ so that }}du = \frac{{\sec x\tan x + {{\sec }^2}x}}{{\sec x + \tan x}}dx \cr & du = \sec xdx \cr & {\text{Write the integral in terms of }}u \cr & \int {\frac{{\sec xdx}}{{\sqrt {\ln \left( {\sec x + \tan x} \right)} }}} = \int {\frac{{du}}{{\sqrt u }}} \cr & = \int {{u^{ - 1/2}}} du \cr & {\text{Integrate by using the power rule}} \cr & = \frac{{{u^{1/2}}}}{{1/2}} + C \cr & = 2{u^{1/2}} + C \cr & = 2\sqrt u \cr & {\text{Write in terms of }}x:\cr & {\text{Replace }}\ln \left( {\sec x + \tan x} \right)\tan t{\text{ for }}u \cr & = 2\sqrt {\ln \left( {\sec x + \tan x} \right)} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.