Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 52

Answer

$$\ln \left( 2 \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /12} {6\tan 3x} dx \cr & = 6\int_0^{\pi /12} {\tan 3x} dx \cr & {\text{Integrate with the formula }}\cr & \int {\tan ax} dx = - \frac{1}{a}\ln \left| {\cos ax} \right| + C \cr & = - \frac{6}{3}\left( {\ln \left| {\cos 3x} \right|} \right)_0^{\pi /12} \cr & {\text{Use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = - 2\left( {\ln \left| {\cos 3\left( {\frac{\pi }{{12}}} \right)} \right| - \ln \left| {\cos 3\left( 0 \right)} \right|} \right) \cr & {\text{Simplifying, we get:}} \cr & = - 2\left( {\ln \left| {\frac{{\sqrt 2 }}{2}} \right| - \ln \left| 1 \right|} \right) \cr & = - \ln \left( {\frac{{{{\sqrt 2 }^2}}}{{{2^2}}}} \right) \cr & = \ln \left( 2 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.