Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 67

Answer

$$ y^{\prime}=\frac{1}{3} \sqrt[3]{\frac{x(x-2)}{x^{2}+1}}\left(\frac{1}{x}+\frac{1}{x-2}-\frac{2 x}{x^{2}+1}\right) $$

Work Step by Step

Given $$ y=\sqrt[3]{\frac{x(x-2)}{x^{2}+1}}$$ So, we have \begin{aligned} &\Rightarrow \ln y=\ln\sqrt[3]{\frac{x(x-2)}{x^{2}+1}} \\ &\Rightarrow \ln y= \frac{1}{3}\ln \frac{x(x-2)}{x^{2}+1} \\ &\Rightarrow \ln y=\frac{1}{3}\left[\ln x (x-2)-\ln \left(x^{2}+1\right)\right]\\ &\Rightarrow \ln y=\frac{1}{3}\left[\ln x+\ln (x-2)-\ln \left(x^{2}+1\right)\right]\\ &\text{differentiate both sides with respect to } x\\ & \Rightarrow \frac{y^{\prime}}{y}=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{x-2}-\frac{2 x}{x^{2}+1}\right) \\ & \Rightarrow y^{\prime}=\frac{y}{3}\left(\frac{1}{x}+\frac{1}{x-2}-\frac{2 x}{x^{2}+1}\right) \\ & \Rightarrow y^{\prime}=\frac{1}{3} \sqrt[3]{\frac{x(x-2)}{x^{2}+1}}\left(\frac{1}{x}+\frac{1}{x-2}-\frac{2 x}{x^{2}+1}\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.