Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 24

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{x\ln \left( {\ln x} \right)\ln x}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\ln \left( {\ln x} \right)} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln \left( {\ln x} \right)} \right] \cr & {\text{use the chain rule}}{\text{,}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\ln \left( {\ln x} \right)}}\frac{d}{{dx}}\left[ {\ln \left( {\ln x} \right)} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{{\ln \left( {\ln x} \right)}}\left( {\frac{1}{{\ln x}}} \right)\frac{d}{{dx}}\left[ {\ln x} \right] \cr & {\text{solve the derivative}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\ln \left( {\ln x} \right)}}\left( {\frac{1}{{\ln x}}} \right)\left( {\frac{1}{x}} \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{x\ln \left( {\ln x} \right)\ln x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.