Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 60

Answer

$$\frac{{dy}}{{d\theta }} = \left( {\tan \theta } \right)\sqrt {2\theta + 1} \left( {\frac{{{{\sec }^2}\theta }}{{\tan \theta }} + \frac{1}{{2\theta + 1}}} \right)$$

Work Step by Step

$$\eqalign{ & y = \left( {\tan \theta } \right)\sqrt {2\theta + 1} \cr & {\text{Take the natural log of both sides:}} \cr & {\text{Use the properties of logarithms}} \cr & \ln y = \ln \left( {\left( {\tan \theta } \right)\sqrt {2\theta + 1} } \right) \cr & {\text{product rule:}} \cr & \ln y = \ln \left( {\tan \theta } \right) + \ln \left( {\sqrt {2\theta + 1} } \right) \cr & {\text{power rule:}} \cr & \ln y = \ln \left( {\tan \theta } \right) + \frac{1}{2}\ln \left( {2\theta + 1} \right) \cr & {\text{Take derivatives of both sides:}} \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left( {\ln \left( {\tan \theta } \right)} \right) + \frac{1}{2}\frac{d}{{d\theta }}\left( {\ln \left( {2\theta + 1} \right)} \right) \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \frac{{{{\sec }^2}\theta }}{{\tan \theta }} + \frac{1}{2}\left( {\frac{2}{{2\theta + 1}}} \right) \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \frac{{{{\sec }^2}\theta }}{{\tan \theta }} + \frac{1}{2}\left( {\frac{2}{{2\theta + 1}}} \right) \cr & {\text{solve for }}\frac{{dy}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = y\left( {\frac{{{{\sec }^2}\theta }}{{\tan \theta }} + \frac{1}{{2\theta + 1}}} \right) \cr & {\text{substitute }}\left( {\tan \theta } \right)\sqrt {2\theta + 1} \sin \theta {\text{ for }}y{\text{ }} \cr & \frac{{dy}}{{d\theta }} = \left( {\tan \theta } \right)\sqrt {2\theta + 1} \left( {\frac{{{{\sec }^2}\theta }}{{\tan \theta }} + \frac{1}{{2\theta + 1}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.