Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 382: 72

Answer

$\displaystyle \frac{3}{2}\ln 2$

Work Step by Step

Area between curves $f(x)$ and $g(x)$, where $g(x)\geq f(x)$ on $[a,b], $ is $A=\displaystyle \int_{a}^{b}[g(x)-f(x)]dx$ On $[-\pi/4,0]$ the graph of tan is below the x-axis On $[0,\pi/3]$, it is above the x-axis. $A=\displaystyle \int_{-\pi/4}^{0}(-\tan x)dx+\int_{0}^{\pi/3}\tan xdx$ See summary before example 4,$ \displaystyle \quad \int\tan udu=\ln|\sec u|+C$ $A=-[\ln|\sec x|]_{-\pi/4}^{0}-[\ln|\sec x|]_{0}^{\pi/3}$ $=-\ln 1+\ln\sqrt{2}-\ln 2+\ln 0$ $=\displaystyle \frac{1}{2}\ln 2+\ln 2$ $=\displaystyle \frac{3}{2}\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.