Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 27

Answer

$$\frac{{dy}}{{dx}} = - \frac{{3x + 2}}{{2x\left( {x + 1} \right)}}$$

Work Step by Step

$$\eqalign{ & y = \ln \frac{1}{{x\sqrt {x + 1} }} \cr & {\text{ write }}\sqrt {x + 1} {\text{ as }}{\left( {x + 1} \right)^{1/2}} \cr & y = \ln \frac{1}{{x{{\left( {x + 1} \right)}^{1/2}}}} \cr & {\text{use the quotient property for logarithms}} \cr & y = \ln 1 - \ln x{\left( {x + 1} \right)^{1/2}} \cr & y = - \ln x{\left( {x + 1} \right)^{1/2}} \cr & {\text{use the product property for logarithms}} \cr & y = - \ln x - \ln {\left( {x + 1} \right)^{1/2}} \cr & y = - \ln x - \frac{1}{2}\ln \left( {x + 1} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = - \frac{d}{{dx}}\left[ {\ln x} \right] - \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {x + 1} \right)} \right] \cr & {\text{solve the derivatives and simplify}} \cr & \frac{{dy}}{{dx}} = - \frac{1}{x} - \frac{1}{2}\left( {\frac{1}{{x + 1}}} \right) \cr & \frac{{dy}}{{dx}} = - \frac{1}{x} - \frac{1}{{2\left( {x + 1} \right)}} \cr & \frac{{dy}}{{dx}} = \frac{{ - 2x - 2 - x}}{x} \cr & \frac{{dy}}{{dx}} = - \frac{{3x + 2}}{{2x\left( {x + 1} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.