Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 12

Answer

$$\frac{1}{{\theta + 1}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {2\theta + 2} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\ln \left( {2\theta + 2} \right)} \right] \cr & {\text{use the formula }}\frac{d}{{d\theta }}\ln u = \frac{1}{u}\frac{{du}}{{d\theta }}{\text{, }}u > 0\cr & {\text{ where }}u{\text{ is any differentiable function of }}\theta \cr & {\text{for this exercise let }}u = \theta + 1{\text{; then}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\theta + 2}}\frac{d}{{d\theta }}\left[ {2\theta + 2} \right] \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\theta + 2}}\left( 2 \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{d\theta }} = \frac{2}{{2\left( {\theta + 1} \right)}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\theta + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.